HOW GOVERNANCE COSTS
DRIVE COMPENSATION OF MANAGERS AND
SALESPEOPLE IN BUSINESS-TO-BUSINESS FIELD SALES

Dominique Rouziès
Professor of Marketing
HEC School of Management, Paris (GREGHEC)
1, Avenue de la Libération
78351 Jouy-en-Josas, FRANCE
rouzies@hec.fr

Anne T. Coughlan
Associate Professor of Marketing
Kellogg School of Management
Evanston, IL 60208-2008, USA
a-coughlan@kellogg.northwestern.edu

Erin Anderson
Professor of Marketing
INSEAD
Boulevard de Constance
77305 Fontainebleau Cedex, FRANCE
erin.anderson@insead.edu

March 2006

The authors express their appreciation to the Hay Group for providing the data and for many valuable conversations. Sébastien Caillet, Robert Davenport, and David Hufnagel were particularly helpful. We thank Jack Anderson of Ernst & Young for contributing tax information. We also appreciate the comments of participants in seminars at INSEAD, Tulane, Kellogg, the Sorbonne (Prism), and the Marketing Science Conference, and the assistance of Jinping Fan. We thank Steven Brown, Peter Cappelli, René Darmon, Hubert Gatignon, Ranjay Gulati, Rupinder Jindal, Kissan Joseph, Murali Mantrala, Elie Matta, Sanjog Misra, Vincent Onyemah, Werner Reinartz, Michael Segalla and Henry Tosi for comments on an early draft.
HOW GOVERNANCE COSTS
DRIVE COMPENSATION OF MANAGERS AND SALESPEOPLE
IN BUSINESS-TO-BUSINESS FIELD SALES

Abstract

Two key issues in business-to-business (B2B) sales force management are 1) how much a given sales role should be compensated (pay level) and 2) how much of the compensation should be fixed versus variable (pay structure). We examine the paychecks drawn by people in over 14,000 selling jobs and over 4,000 sales management jobs in five B2B industry sectors in five European countries. We show how anticipated frictions inside the firm appear to play a major role in both pay level and pay structure. Decision makers in sales management appear to compromise between the economic imperative to connect pay to productivity and the sociological imperative that pay be seen as legitimate and fair to other employees. This compromise must be struck not only by those setting salespeople’s pay, but also by those setting the pay of first-line sales managers. We show that both the level and nature of compensation are keyed to the job’s challenge. For salespeople, more challenging jobs pay better at a constant rate, while for sales managers, pay increases at an increasing rate for job challenge. This suggests that sales managers make a particularly valuable contribution. We also show that the structure of pay appears to reflect decision makers’ desire to motivate high performers, but without raising governance costs to very high levels. In particular, variable pay appears to be used as a way to delegate the most contentious compensation judgments to a third party—the customer base.

Key words: compensation, motivation, justice theory, pay disparity, governance costs, sales management
HOW GOVERNANCE COSTS DRIVE COMPENSATION OF MANAGERS AND SALESPEOPLE IN BUSINESS-TO-BUSINESS FIELD SALES

Introduction

In many B2B industries, personal selling in the field is a critical marketing function. One of the most pressing issues concerns compensation. How much should a salesperson earn (the question of pay level), and how much of that pay should be guaranteed (salary) rather than contingent on achievement (the question of pay structure)? Some practitioners believe that an even more important issue is the level and structure of pay for the managers who supervise salespeople. Elling et al. (2002) assert that a poor manager can ruin a number of salespeople and seriously reduce the achievements of each one, while an excellent manager can develop several great salespeople, each of whom consistently generates high returns.

A large body of research yields insight about compensation in general, but is difficult to apply to B2B field sales, a job with unusual features (Gomez-Mejia and Balkin 1992). Research specific to sales roles has not kept pace with management’s need to understand the level and structure of sales compensation. In particular, insights have been generated by a self-contained literature on optimal salesperson compensation, based on economic theories (Albers 2002). However, Brown et al. (2005) conclude that it is difficult to apply these insights to many selling situations, in particular given that the field sales role is becoming more complex and longer in its time orientation (Jones et al. 2005). Complicating the compensation research issues further, most empirical salesperson compensation research concerns pay structures, ignoring pay levels, while research on compensation of sales managers is almost nonexistent. Albers (2002) points to the great difficulty of getting detailed and accurate data on compensation in sales, a subject firms consider sensitive.
Our research addresses whether existing results on field salespeople can be directly extended to sales managers. Our results show that as job challenge increases, salespeople are paid more, but in a linear fashion (like a factory worker). In contrast, manager pay rises with job challenge at an increasing rate (like a Chief Executive Officer). We suggest that challenging sales management jobs involve heavy doses of coaching and enabling. In these roles, managers can substantially improve the performance of multiple salespeople (each of whom books business). Thus, holders of the most difficult sales management jobs can have a multiplier effect on revenue that justifies paying them at increasing rates, in spite of the governance costs created by large disparities in pay.

We test our research hypotheses using data covering more than 14,000 salesperson roles and more than 4,000 sales manager roles operating in five European countries and in five B2B industry sectors. We supplement these data with privately commissioned data about each country’s taxation, as well as publicly available data on cost of living. With this multi-source, multi-country secondary data, we discern patterns in pay level and structure at the individual job/paycheck level. Ours is the first compensation study to examine the sales (or sales manager) role at a micro level. Prior research has examined the person filling the selling role (e.g. age, education), and/or has averaged across sales roles at the firm level, usually based on survey data about “typical” sales positions inside a firm.

Drawing on literature from sales force management, compensation theory, equity theory, and transaction cost analysis, we develop a conceptual model linking compensation level and structure. We argue that pay level and pay structure decisions are linked, and are both driven by governance costs. These are internal transaction costs which arise when the firm cannot compensate its employees in an economically appropriate way (that is, in proportion to their
productivity). Governance costs arise in part because managers have imperfect information and are bounded in their rationality. We show how anticipated frictions inside the firm appear to play a major role in both pay level and pay structure. Decision makers in sales management appear to compromise between the economic imperative to connect pay to productivity and the sociological imperative that pay be seen as legitimate and fair to other employees. We make no claims of optimality, but do suggest managerial implications, as well as future research directions.

A CONCEPTUAL MODEL OF COMPENSATION LEVEL AND STRUCTURE

Challenges in Sales Compensation Research

Face-to-face selling on the customer’s premises (field selling) is particularly important in the B2B sector, in which skilled salespeople work to solve customer problems to create a sale, and then work within their own firms to ensure that obligations to the customer are honored. In B2B, salespeople are often the principal means of promotion and of gaining market feedback, and can strongly influence profitability. Accordingly, top salespeople may be paid astonishingly well.

There is a large literature on compensation, reflecting many perspectives, principally organization theory and behavior, international management, I/O psychology, sociology, economics (including principal-agent theory), labor economics, law, and strategy (Werner and Ward 2004). Yet B2B sales jobs are curiously absent from compensation research, both empirically and conceptually. Indeed, compensation texts urge caution in applying compensation insights due to its exceptional features (Gomez-Mejia and Balkin 1992). No two sales territories are alike, so every job is unique, making it difficult to establish baselines (Ryans and Weinberg 1987). Unlike most jobs, information is asymmetric; salespeople know their territories, customers, and competitors much better than does management. Salespeople are autonomous:
they are out in the field, away from direct observation and contact. Further, for many sales jobs, it is very difficult to specify the best route to success. These factors suggest that the monitoring and assessment of performance are difficult. All of this complicates a first-line sales manager’s efforts to calibrate appropriate salary levels, person by person, year by year—and to convince both her superiors and her subordinates that her multiple judgments are correct. However, salespeople do generate visible outcomes for which they can be held (at least somewhat) accountable. Thus, contingent (incentive) pay can be used as substitute for salary, and is more justifiable than in almost any other occupational setting (Gomez-Mejia and Balkin 1992).

The stage is set for high governance costs and internal frictions. Managers will have a difficult time settling on the proper amount to pay and in what form. Thus, their judgments will be a challenge to explain, both to subordinates and to superiors. Chang and Dubinsky (2005) note that salespeople, even more than other employees, are acutely sensitive to organizational justice, for three reasons. First, rewards substitute for close supervision (which sales jobs cannot have). Second, few employees can get incentive pay, opening up distinctive fairness issues. Third, the salesperson’s autonomy makes her feel she has little representation or voice. The result: salespeople care a great deal about fairness in general and fair compensation in particular.

A self-contained literature on sales pay has developed, largely within marketing, recently reviewed by Albers (2002), Krafft, Albers, and Lal (2004), and Brown et al. (2005). Much of this literature focuses on optimal compensation (in particular, as per agency theory). In practice, sales pay is subject to an enormous variety of forces, leading Zoltners and Sinha (2001) to conclude that compensation is extraordinarily complex and is difficult to model. Further, it is a challenge to get comprehensive data on sales pay, particularly across organizations. Data typically describe the person holding the role (e.g., age, experience), rather than the demands of the role.
Pay Dispersion: Difficult to Harness, Impossible to Ignore

A substantial literature on wage differentials (pay disparities) concerns differences in pay among people doing the same job (horizontal pay differentiation) and across types of jobs (vertical pay differentiation). For reviews, see Heyman (2005), Siegel and Hambrick (2005), and Nickerson and Zenger (2006). This pay disparity literature neatly divides into two opposing camps. One camp (including economic and psychological theories of motivation based on expected rewards) holds that pay disparity across individuals and across job descriptions is functional, indeed essential to attract and retain qualified people and to induce them to accept more difficult jobs (Milkovich and Newman 2002). The sales force compensation literature is dominated by this viewpoint.

However, a growing body of research argues that wide pay disparities are dysfunctional (Bloom 1999). This opposing camp rests on social comparison theory, a large and established literature originating the 1950s and reviewed by Nickerson and Zenger (2006). A seminal contribution is Adams’ (1965) theory of inequity in social exchange, which holds that people monitor the ratio of contributions to rewards and compare their own ratio to that of a relevant reference group. Unfortunately for management, individuals are quick to consider themselves relatively deprived (Martin 1981). Employees tend to have inflated perceptions of their personal contribution (Zenger 1992); most consider themselves underpaid (Heneman and Judge 1999). Field salespeople are no exception (Anonymous 2001): 69% think they deserve more pay (whereas only 39% of sales managers think their subordinates are underpaid). Jaramillo, Carrillat, and Locander (2003) show that underperforming salespeople protect their self images via positive illusions, information filters, and understating how well others perform. Zoltners and Sinha (2001) assert, based on over two thousand consulting interventions, that salespeople agree they
should be paid more. If most people think they perform relatively well, it is no surprise if they do not trust their managers to rate their performance objectively. Further, they focus on those colleagues whose performance they perceive as comparable, but who earn more (Martin 1981), also resulting in a sense of unfairness (Nickerson and Zenger 2006). Employees also resent vertical pay disparity across job ranks.

Employees peg their compensation using a social comparison process with others’ pay, which spotlights gross compensation (Siegel and Hambrick 2005). But organizations cannot overlook net pay, because it is after-tax income that motivates employees by determining the employee’s lifestyle. In some tax regimes, after-tax income differentials can be compressed to levels that leave employees wondering why they should work harder (Gottschalk and Smeeding 1997). Hence, our hypotheses focus on the level of take-home pay.

**How Job Challenge Influences Pay Level**

A review by Lazear (1995, p. 260) notes the curious omission of task characteristics (job demands), even though “the entire notion of a ‘job’…seems central to the thinking of businesspersons and administrators.” This is understandable because it is difficult to compile detailed data on role demands. In B2B field sales, all jobs look superficially alike, but conceptually they are scalable from low to high job challenge (Davenport 2001). Low-challenge sales jobs demand relatively little know-how or problem solving, and typically involve repetitive small sales to transactional customers. In contrast, high-challenge sales jobs involve consultative relationship management of jumbo accounts. These jobs demand leadership of internal cross-functional teams on the supplier’s side, which work with corresponding teams on the customer’s side. Similarly, sales managers’ variations in job challenge may come from supervising less
versus more challenging sales roles, or from variations in depth of supervisory responsibility or other strategic roles in the firm.

We hypothesize that firms will award higher pay as job challenge rises. This horizontal pay disparity may increase other employees’ feelings of injustice. However, it is likely that the more challenging the sales job, the more valuable and visible is the contribution of salespeople who do the job well. Further, competitors will poach the best performers if the firm does not reward them (Cappelli 1999). Hence, decision makers can readily agree that it is in the firm’s interest, *internal frictions notwithstanding*, to motivate the jobholder to work harder and smarter.

Does the same argument apply to sales managers themselves? One viewpoint, common among salespeople, is that their first-line supervisors are mere “paper pushers” who have little impact on sales district outcomes. However, better sales managers can make a very significant difference, by enabling and coaching their multiple subordinates, and by securing organizational resources for promising customers (Anderson 1996). Therefore, empowering a number of these salespeople has multiplier effects on revenue and profits (MacKenzie, Podsakoff, and Paine 1999). This multiplier effect is not seen with field salespeople, who do not supervise other salespeople and therefore cannot themselves easily influence the performance of multiple other salespeople (Zoltners, Sinha, and Lorimer 2004). This may call for compensating sales manager roles not at constant but at increasing rates to job challenge. We therefore posit that:

H1a: The *level* of take-home pay increases with job challenge for salespeople.

H1b: The *level* of take-home pay increases at an *increasing rate* with job challenge for sales managers.

*How Job Challenge Influences Pay Structure*

Shaw, Gupta, and Delery (2002) argue that when employees perceive that pay differences are indeed based on legitimate grounds, pay dispersion is accepted and functional. This leads
firms to introduce variable pay by devising pay-for-performance schemes that award contingent compensation whenever an employee demonstrates superior performance. The challenge is to devise a rating system that truly captures performance—and is seen to do so, both by subordinates (those who are paid) and upper managers (those who judge whether compensation schemes help the organization meet its goals). Governance costs arise when firms cannot compensate in an economically appropriate way, either because subordinates fight the perceived injustice (friction downstairs) or because management criticizes the decision maker’s judgments (friction upstairs).

One way to pay for performance without arousing excessive internal resistance (upward and downward) to pay disparity is to devise a formula that ties variable pay to an objective indicator or set of indicators that the decision maker cannot manipulate. This is more readily done in sales than in most occupations. At first glance, the internal-friction argument suggests that a high proportion of pay in challenging sales jobs will be variable (“incentive-loaded compensation” in the terms of Ghosh and John 2000).

However, the argument runs afoul of considerations of feasibility. Creating a pay-for-performance formula becomes more difficult as jobs become more complex and less routine—in short, less programmable or observable (Eisenhardt 1985). Reliance on variable pay in this environment will encourage gaming, discourage teamwork, and shorten the jobholder’s time horizon. We expect job challenge to create different pay structures as follows:

The greater the role challenge, the lower the proportion of total pay generated by pay-for-performance formulas

H2a: for salespeople
H2b: for sales managers.

How the Tax Environment Magnifies Internal Transaction Costs

Our fundamental argument is that economic considerations drive firms to single out and reward high performers in challenging sales jobs, but bounded rationality, imperfect information,
and the risk of internal friction come together to hamper a manager’s efforts to do so. Factoring in national taxation systems introduces a new complication by magnifying the risk of internal friction upward and downward. Hence, tax variation enables us to assess indirectly the internal friction explanatory mechanism.

A burdensome (“oppressive”) national income tax regime 1) calculates taxable income and imposes levies such that effective tax rates are high, and 2) is steeply progressive, meaning rates increase sharply with income. Thus, employees keep small shares of what they earn on the margin. Taxation follows culture, among other things: collectivist cultures favor burdensome tax regimes as a means of reducing income inequality and offering a decent lifestyle to low-income citizens (Gottschalk and Smeeding 1997).

Rewarding sales-related performance creates internal frictions even with zero taxation. Subordinates may feel under-rewarded, while superiors question whether the higher-paid B2B field salespeople are worth their paychecks (which can be breathtaking). Burdensome tax regimes exaggerate the risk of friction in two ways. First, to insure that post-tax differentials among performance levels are large enough to be motivating, a firm must create very large gross pay differentials. Firms will be obliged to pay a high-performing sales employee whatever it takes to make sure that motivating pay premiums are still in the employee’s bank account after s/he pays taxes. Second, tax brackets change as gross pay changes for the employer, boosting employers into higher brackets of payroll tax as well. The combined tax burden—employee and employer—leads to enormous differences across employees in their total cost to the company.

These two considerations (employee and employer) amplify the risk of internal transaction costs. Although employees live on post-tax pay, they do track and make social comparisons on gross pay differentials (Baron and Kreps 1999, Heyman 2005). When management decides by fiat
(via salary mechanisms) who will receive these tax-exaggerated pay premiums, the usual negative
effects of pay dispersion will be worsened: managers are likely to face charges of unfairness
(from below) and misallocation of resources (from above). These internal transaction costs are
intensified in oppressive tax regimes.

One way to defuse internal tension is to shift the contentious decision to a third party that
cannot be manipulated by management—the customer base. Variable pay systems empower
customers, whose orders trigger compensation. When the customers’ collective decisions
designate the high or low performer, it is more difficult to accuse management of errors in
judgment. Customers’ self-interested agendas are independent of internal supplier politics.

Therefore, we hypothesize that:

The proportion of total pay that is due to variable sources increases as the employee’s
taxation burden increases
H3a) for salespeople,
H3b) for sales managers.

The proportion of total pay that is due to variable sources increases as the employer’s
taxation burden increases
H4a) for salespeople,
H4b) for sales managers.

*The Relation of Pay Structure to Pay Level*

Organizations relying on variable pay shift downside risks from the organization to the
individual, but are also obligated to pay potentially huge sums when high-powered incentives
motivate the jobholder to new performance heights. Both parties may object. Individuals
typically are highly averse to downturns (Gerhart 2001). Organizations, taken aback by the sums
they owe, may regret having promised pay for performance and may even try to renege,
dismissing stellar achievement as a “windfall” (Gomez-Mejia and Balkin 1992, Hill 2001).
Yet, for sales jobs, firms can’t afford not to reward salespeople somehow when they generate results from their customers: otherwise, salespeople may shirk, behave unethically, sabotage, or quit. One solution is to combine variable pay with higher average take-home pay. Weiss (2001) argues that firms that embrace variable pay can outbid the average total pay at salary-only firms because they can offer lofty pay to high performers, while avoiding the risk of high pay for poor performance. This holds for sales managers as well, since their variable pay may be hinged to the performance of their subordinates. Employees may also see compensation systems involving heavy variable pay as equitable because jobholders can change performance quarter to quarter, allowing poor performers to move up. And they may frame pay volatility as a form of risk, which deserves (even requires) the possibility of offsetting higher returns. Conversely, it is unlikely that salary-only firms will pay well, given their assumption of the risk of poor performance. We therefore posit:

The level of take-home pay increases with the proportion of total pay due to variable sources
H5a: for salespeople
H5b: for sales managers.

Baseline Influences on Pay Level and Pay Structure

Our premise is that sales personnel care about how well their compensation allows them to live, to the point that management must factor this into pay structure and pay level. If so, the cost of living in a country should influence pay levels, which should be adjusted upward to reflect high costs (Milkovich and Newman 2002).

Industry factors should also matter. Multi-industry studies typically do find industry effects, which may capture important elements of the competitive and task environment (Milkovich and Newman 2002), as well as industry-specific norms (Gomez-Mejia and Balkin 1992).
Firms that operate in only one country (national firms) may not follow the same compensation strategy as multi-country (international) firms (Werner and Ward 2004). International firms have reason to harmonize practices over countries, whereas national firms are free to reflect local norms.

The size of the employer is an important factor, but the nature of its impact is controversial. Concerning pay level, it is taken for granted that large firms pay better than small firms for all jobs, though it is unclear why (Milkovich and Newman 2002), and the difference is rapidly fading away (Hollister 2004). Concerning pay structure, does firm size influence reliance on variable pay? The limited literature that addresses this question empirically suggests that small firms rely more on variable pay and less on salary, perhaps because they cannot afford overhead. However, in a study of over fourteen thousand middle and top managers, Gerhart and Milkovich (1990) find the reverse. Misra, Coughlan, and Narasimhan (2005) and John and Weitz (1989) study field salespeople, and also find that larger companies turn to variable pay. Misra, Coughlan, and Narasimhan (2005) argue that this arises from two factors: lower risk aversion in large versus small firms, and higher sales productivity in large firms. John and Weitz (1989) explain the size result as a reaction to governance costs: the larger the firm, the more judgments must be made, and the more difficult it is to keep these judgments consistent and to explain them convincingly to salespeople.

MODEL DEVELOPMENT AND ESTIMATION

Sample

Key variables are compiled by the Hay Group, the world’s largest compensation consulting firm, which uses the information to generate and sell benchmarking reports by industry and country, as well as for consulting. Hay uses a highly formalized job evaluation methodology,
adopted by over 40% of the Fortune 1000 companies, based on its own proprietary position evaluation methodology (Sperling 2001). The central variable is the Hay point, an overall index of the job challenge of any job (here, each sales or sales management role). This index is painstakingly calibrated by Hay consultants in conjunction with personnel from human resources and sales management within each company, based on detailed information about tasks, duties and responsibilities of each job type. This information is combined to provide a single overall measure of skills or job requirements, described below. Hay also draws on each company’s archives to ascertain the pay level and composition (fixed versus variable) actually earned by the individuals filling these thousands of jobs.

Our dataset contains fixed and variable compensation in 2002 for 14,424 salespeople and 4,957 sales managers from national or international organizations operating in five European countries (France, Germany, Italy, the Netherlands, and the United Kingdom), and five industrial sectors (consumer, financial, industrial goods, trade and other sectors). Roughly two thirds of salespeople and half of sales managers work for national companies. In the sales arena, researchers have followed human capital theory, typically relying on measures of sales people characteristics - averaged at the sales force level - to investigate sales personnel compensation issues (e.g., Coughlan and Narasimhan 1992, Krafft 1999, Misra, Coughlan, and Narasimhan 2005, Krafft, Albers, and Lal 2004). Examining sales job characteristics rather than salespeople’s, as the Hay data permits us to do, is likely to substantially enrich our understanding of sales compensation. See Tables 1 and 2 for the structure of the sample.

Measures

Take-home pay. Total compensation measures are adjusted to account for income and social taxes, country by country, bracket by bracket. Ernst & Young, a prominent international tax
accounting firm that regularly computes such figures for the business press, provided the 2002 tax figures for every €5,000 earnings ranging between €5,000 and €250,000, assuming sales personnel are prototypical, i.e. married with two children under 16. Using these tax and earning figures, we estimated employees’ taxes through piecewise regression analysis in order to maximize the fit. This approach abstracts from the principles of tax systems and gets directly into actual taxes, given actual pay ranges for real people in each country. Because the resulting figures for take-home pay vary substantially across industries, we standardize take-home pay by industry (mean=0 and standard deviation=1). See Tables 1 and 2 for raw figures and Tables 3 and 4 for descriptive statistics.

Firm size is operationally defined as the average of firm sales and total number of employees (each expressed as a Z score). Corporate sales range from €9 million to €8,000 million with a mean of €1,128 million (using individual salespeople as units of analysis). Total employees range from 50 to 20,000 with a mean of 4,179 employees. The average corporation studied would place about 2500th in the AMADEUS (2004) ranking of European companies for sales. The average total number of employees for an observation in our dataset is the same as the average for the 2000th to 2500th European companies. Thus, although the companies we study were not randomly selected, they appear typical in some key respects.

Job challenge. The Hay point system is clearly defined, readily observable, applicable to any job, and rigorous. Hay points are considered a standard scale for measuring the “value” of a job both within and across organizations (Baron and Kreps, 1999, p. 285). Hay points capture the skills needed for a job through a combined measure of know-how (i.e., capabilities, knowledge and specialized techniques), problem-solving (i.e., requirements to deal with unusual situations) and accountability (i.e., empowerment, authority and magnitude). Davenport (2001) tests the
nomological validity of Hay points for sales positions, showing that increasing points match the progression of the selling task from basic roles (transactional selling) to relationship selling, then to consultative selling, and finally to value-added selling. As these jobs become more challenging, they demand a longer time horizon and necessitate multiple, diverse indicators assorted to more complex and rigorous customer demands. They also require more teamwork, as salespeople go from individual selling to leading sales teams that deal with purchasing teams.

The Hay index is comparable across jobs and across firms. It is not, however, linear (Sperling 2001). A given position can gain an increment only if it is at least 15% more challenging than the closest lower job, on grounds that smaller differences are not noticeable enough to be measured reliably (or appreciated by employees)\(^6\). Although this minimum 15% gradient in measurement could introduce convexity into the relationship between Hay points and take-home pay, most jobs exhibit linear relationships in most firms (Sperling 2001).

Salespeople’s Hay points range from 104 to 994, whereas managers’ Hay points range from 285 to 997. Managers tend to operate in higher ranges of job challenge: the average number of Hay points is 405 for a salesperson and 600 for a sales manager (Tables 3 and 4).

*Ratio of variable to fixed pay.* We divide percent of total (i.e. gross) cash compensation that is variable (setting the minimum at .01) by the percent that is fixed. We log this odds ratio, which is interpretable as the relative emphasis on variable versus fixed, in order to decrease heteroscedasticity, as recommended by Cooper (1993). On average, 13% of take-home pay comes from variable pay (implying that the average odds ratio would be 13 divided by 87, or 0.149; and the average log odds ratio would be the log of 0.149, or -.1.90).
Cost of living. We used the 2002 comparative price levels (Organization for Economic Cooperation and Development, 2003), which measure price-level differences between countries for a representative basket of consumer goods and services.7

Employee’s tax burden. We calculate the proportion of income employees keep after taxes. This is a proxy for the weight of tax burden on the employee side, and is reverse scored, as it is lower in burdensome tax regimes.

Employer’s tax burden. Corporate tax burden is operationalized by calculating the ratio of corporately-paid social taxes triggered by variable pay to variable pay itself:

\[
\text{Employer’s tax burden} = \frac{\left(\text{Employer taxes triggered by gross total pay}\right) - \left(\text{Employer taxes triggered by base salary}\right)}{\left(\text{Gross total pay}\right) - \left(\text{Base salary}\right)}.
\]

This shows how much of variable pay must be matched by payroll taxes. This is a proxy for the weight of tax burden on the employer side, and is higher in more burdensome tax regimes. By focusing on the proportion triggered after salary, we capture the payroll tax brackets into which performance pay moves an employer in a given tax regime.

Estimation Procedures for Salespeople

Based on the hypotheses described previously, we estimate the parameters of the following model specifications for salespeople across countries8.

Take Home Pay\(_i\) = \alpha_0 + \alpha_1 \text{Job Challenge}_i + \alpha_2 \text{Job Challenge}^2_i + \alpha_3 \text{Firm Size}_i + \alpha_4 \text{Cost of Living}_i + \alpha_5 \ln[\text{Ratio Variable to Fixed Pay}_i] + \varepsilon_1 \hspace{1cm} (1)

\ln[\text{Ratio Variable to Fixed Pay}_i] = \beta_0 + \beta_1 \text{Job Challenge}_i + \beta_2 \text{Firm Size}_i + \beta_3 \text{Proportion of Employee’s Income Retained after Taxes}_i + \beta_4 \text{Employer’s Tax Burden}_i + \varepsilon_2 \hspace{1cm} (2)

where:

Subscript \(i\): Salesperson or sales manager
Take Home Pay: Net pay standardized by industry
Job Challenge: Hay points
Firm Size: Sum of standardized number of employees and standardized firm sales
Cost of Living: Comparative price level index of a country
Ln[Ratio Variable to Fixed Pay]: Log of ratio of variable to fixed compensation (this variable is standardized by industry when it is the dependent variable of equation 2)
Proportion of Employee’s Income Retained after Taxes: Proportion of income employees keep after taxes
Employer’s Tax Burden: Ratio of corporately-paid social taxes triggered by variable pay to variable pay itself

Equation (1) specifies pay levels, equation (2) specifies pay structure, and both dependent variables are standardized within industry. As noted earlier, the mean and range of sales pay is ordinarily industry specific, in part because of different conditions in different industries. We conducted extensive subgroup comparisons, which suggest that the overall patterns of coefficients within industries differ in magnitudes but are comparable in signs. Our interest is in testing substantive explanations; hence, we focus on the direction of effects.

Since a subset of independent variables and the observations are common to both models, there is a possibility of correlation between the error terms in the two equations. Thus, we treat the two equations as SUR (Seemingly Unrelated Regressions) to maximize the efficiency of the estimation (Gatignon 2003, Greene 2002). In addition, we estimate the parameters of the equations (1) and (2) using OLS (Ordinary Least Squares). The OLS estimators in the two equations are comparable and significant across the two approaches (i.e. separate OLS regressions or SUR system). However, the levels of significance for SUR coefficients are higher due to the model’s efficiency. Further, we check with the Breusch-Pagan LaGrange Multiplier test (Breusch and Pagan 1980) whether the system is more efficient than single equations and find it is highly significant.9

Finally, we estimate separate models for national and international firms, whose compensation practices may reflect a need to harmonize compensation over all the locations in
which the international firm operates (Gooderham, Nordhaug and Ringdal 1999). Results appear in Table 5.

*Estimation Procedures for Sales Managers*

We use the same procedure as above to calibrate models (1) and (2) for the sample of sales managers, contrasting OLS and SUR estimation. We once again carry out the estimation separately for international and national companies. The OLS estimators in the two equations are generally comparable and significant across the two approaches. As expected, the levels of significance for SUR coefficients are higher. We test the model’s efficiency using the Breusch-Pagan LaGrange Multiplier test. This highly significant test confirms that the system approach is more efficient than single equations.\(^\text{10}\) The SUR estimates of the parameters of the two equations are presented in Table 6.

In addition to OLS and SUR analyses presented above, we performed a number of alternative analyses to test the stability of our results for both salespeople and sales managers. The results were substantially similar to the SUR regression results, in both direction and significance of impact.

**RESULTS**

Our results for salespeople (Table 5) and sales managers (Table 6) are remarkably similar in the qualitative nature of the effects. Further, international and national companies are also remarkably similar in the nature of effects, although the magnitudes vary. We discuss each of the hypothesis tests below in turn.

Our parsimonious model of net-pay level and variable-pay usage yields four systems of equations (international and national firms for managers and salespeople). System variance explained is respectable, ranging from 44 to 53 percent. Results largely conform to the
hypotheses. We turn first to how job challenge operates for different take-home pay levels. We postulate that the more demanding the job, the more employees are paid (H1a and H1b). Our empirical estimations show that this effect is linear (in Hay points) for salespeople, but convex for sales managers (as indicated by the positive and significant coefficient of squared job challenge). For salespeople, the squared term is statistically significant but adds nothing to explained variance, and is therefore dropped from the analysis. With a mean of 600 points (standard deviation 146), many managers operate in a much higher zone of Hay points than do most salespeople (mean 404 points, standard deviation 121).

We turn next to the impact of job challenge on the fraction of variable pay in the employee’s paycheck (calculated pre-tax). H2a and H2b posit that a lower fraction of pay is based on objective performance indicators and awarded in incentive pay (and hence, salary is a higher fraction of total pay) as jobs become increasingly challenging. Our results support these hypotheses for both sales managers and salespeople, in either national or international firms.

We hypothesize that firms turn to variable pay to compose pay packages as tax regimes become more burdensome at either the salesperson level (H3) or the employer level (H4). On the employee side, the less of their performance pay employees can keep, the more burdensome the tax system (i.e. reverse scoring). Negative coefficients therefore indicate that burdensome tax regimes on the employee side drive firms to base more of the paycheck on variable pay; our empirical results thus support H3 for both types of firms and both types of sales professionals.

On the employer side (H4), we hypothesize that as increasing pay forces employers to assume higher payroll tax burdens, firms respond by increasing their reliance on variable pay to fill out the paycheck. Put differently, firms in burdensome systems easily enter into zones of high payroll taxes. They prefer to do so when the customer generates results, rather than relying on
sales managers to award salary. The results support H4, for both salespeople and sales managers in either national or international companies. Note that the employee and employer tax effects are separable and affect the reliance on variable pay in an analogous way.

Finally, H5a and H5b postulate that pay structure and pay level should be studied together; our empirical results bear this out as well. Take-home pay rises significantly with the fraction of pay that is keyed to performance for any type of company, and for sales managers as well as salespeople.

Beyond our stated hypotheses, most of our baseline influences also operate as expected. As noted earlier, the national/international nature of the company and the type of industry play roles in terms of magnitude of effects. Firms do offer more take-home pay in countries with higher costs of living. And, surprisingly, larger firms offer lower take-home pay to salespeople, whether they are national or international. For sales managers, larger international firms also pay less, though there is no difference between larger and smaller national firms.

For both national and international firms, the larger the firm, the higher the fraction of pay that is linked to performance, both for salespeople and sales managers. Table 7 summarizes the hypotheses and empirical results of our analysis.

DISCUSSION

We employ an unusually large and varied cross-national data set with a unique capacity to represent the challenge of the individual sales or sales management role, independent of the characteristics of the job holder. We bring a new viewpoint to compensation research and to sales force compensation in particular. Our results show that the realized compensation levels and compensation structures of over 18,000 people in B2B field sales roles reflect an apparent balancing of two conflicting imperatives: the economic incentive imperative (to reward better
performers by heightening pay dispersion), and the sociological/psychological justice imperative (to contain employee resentment of wide pay differentials and to allay corporate concerns about excessive compensation budgets). This complex trade-off is conducted against a backdrop of severe information asymmetry, as well as bounds on the decision maker’s rationality. These features, ever present in compensation judgments, are magnified by the nature of B2B field selling: a vital function, unique territories, autonomous salespeople operating away from managerial oversight and contact, and multi-faceted responsibilities that complicate the assessment of performance and the specification of tasks and objectives. Our results indicate that compensation reflects governance costs: all these factors drive compensation in a manner that is difficult to explain by productivity alone.

Our findings (such as the higher pay levels in higher cost-of-living countries) are consistent with the hypothesis that firms target take-home pay, knowing that employees are motivated by what they live on. Our results further suggest that firms adapt to the tax environment to make sure that not just pre-tax pay, but after-tax pay, rewards differentials in performance in a meaningful way. Compensation research, while copious, is almost exclusively conducted within a single country, usually in North America. Cross-national comparisons are rare (Werner and Ward 2004). Tax considerations do not enter in single-country studies. Our setting allows a rare look at how international considerations drive compensation.

The cornerstone of personnel administration is the notion that some jobs are more demanding and/or more valuable to the organization than others. Therefore, organizations peg their compensation to job demands, which involves breaking roles into associated tasks and paying more for tasks which are more difficult or for which performance has higher payoff to the employer (Milkovich and Newman 2002). Our results on the significance of job challenge
indicate that take-home pay for field sales is clearly tied to job design. In spite of the potential negative side effects of pay dispersion, organizations do pay more to motivate people to take higher-level sales jobs. Our results indicate that job demands are not a surrogate for human capital: the correlations among features of the individual and demands of the job are small. This mirrors O’Shaughnessy, Levine, and Cappelli (2001), who study over fifty thousand managerial and professional jobs. Also using Hay points to measure job design, they find (p. 20) that Hay points offer “a far more complete measure of skill and job requirements than those used in the past to explain wage outcomes.”

In short, take-home pay is fitted to the job. Werner and Ward (2004) point out that curvilinear effects are rarely considered in compensation research, nor are job (role) factors. Our results demonstrate convex returns to job challenge—but only for sales managers. Firms appear to consider managerial jobs to be particularly valuable. Salespeople who step up Hay points in a field selling job gain a linear increase in take-home pay, but for sales managers, take-home pay increases at an increasing rate, turning up noticeably for the most challenging jobs. These findings contrast with the view that increasing rates of pay increases reflect merely a return to rank, or that sales managers do little but “push paper and keep score”; rather, they are consistent with the idea of rewarding a great sales manager’s ability to empower multiple salespeople directly or indirectly.

Our analysis finds that the structure of pay influences the level of pay. Sales personnel cannot achieve the highest levels of net pay on salary alone. Overall, the greater the proportion of pay that is contingent on performance, the higher is the level of net pay. In other words, volatility is one price of high take-home pay. In this way, firms both auto-fund high pay and reduce their
risk of overpaying salespeople who fail to achieve. This supports agency theory’s contention that pay for performance solves many incentive problems.

However, variable pay is not a panacea. The more challenging the job, the less firms rely on pay for performance, *ceteris paribus*. A likely explanation is that, even for field sales, performance becomes very difficult to observe, i.e. specify and monitor in a timely way. Firms therefore cut back contingent pay and rely more on salary. This creates a tension: firms do use some variable pay to achieve high take-home-pay levels, but they are obliged to reduce reliance on contingent pay. Thus, firms must offer very high salaries for very challenging jobs—and high salaries create internal frictions.

This friction accounts for the surprising finding that burdensome tax regimes drive firms to more transparent compensation structures that are more directly linked to employee output. Given the nature of the sales function, firms cannot wholly replace compensation with non-pecuniary means of motivating people. Our results are consistent with the hypothesis that as tax regimes become more burdensome, managers avoid internal governance costs by shifting the delicate task of awarding the money to a judge that is difficult to accuse of favoritism or other types of internal politics. That judge is the customer base: collectively and without collusion, they generate the high performer’s pay slip when they generate their purchase orders.16

An intriguing and unexpected finding is that, on the whole, larger B2B companies in Europe tend to pay less, as well as to rely on variable pay more. Reliance on variable pay may be explained by the governance costs of making and defending salary judgments on a large scale, and has been found in prior studies in the U.S. (John and Weitz 1989). But that larger companies also pay less is unexpected, and is the reverse of overall patterns in the U.S. (Heneman and Judge 1999; Misra, Coughlan, and Narasimhan 2005).
Could this be a European effect? We speculate that it is, for two reasons. First, moving from one employer to another is difficult in Europe. Coming from a large employer is a form of insurance: it opens doors in case an employee wishes (or needs) to find another job. Employees may accept a discount to get this insurance. Second, European firms, relative to U.S. firms, tend to pay employees in a package that is less heavily weighted toward compensation and more heavily weighted toward benefits in kind (Lemieux 1996). Such benefits include education, travel, entertainment, and transportation, and require an infrastructure in human resources. Large firms have economies of scale, and can pay in perquisites much more efficiently than can small firms. Rather than offering salespeople enough take-home pay to afford a lifestyle, large firms may thus be able to economically offer the lifestyle itself.

Limitations and Conclusions

This study has its limitations. Pay is a complex phenomenon, driven by many considerations and subject to path dependence. Ours is a parsimonious, cross-sectional, as-if model in only five countries. We cannot trace the actual process, nor directly test our posited causal mechanisms. Further, our measures, which come from multiple sources, are approximate and the sampled firms may not be wholly representative of B2B firms, even in Western Europe. Future research would yield more insights, as well as establish the validity of the mechanisms proposed here. Nevertheless, the study offers insights based on individual salespeople’s and sales managers’ profiles, rather than on an average self-reported by the employer, as other studies in the sales force compensation arena have done.

Taken together, these findings suggest that an optimal (first-best) compensation plan may not be feasible. The fundamental compensation challenge in B2B field selling is to reward better efforts and higher ability in the face of an uncertain relationship between the salesperson’s (or
sales manager’s) inputs and the customer-mediated outputs. Internal frictions limit a manager’s ability to implement pay plans designed to make these distinctions. Add in high income taxes, and the pre-tax salaries distinctions necessary to leave motivating sums in employee bank accounts become very large. Our results suggest that managers use “the voice of the market” to reduce governance costs, an important concern that deserves further scrutiny by scholars of sales force management.
Table 1
Summary Statistics for Salespeople by Industry and Country

(\(n = 14424\))

<table>
<thead>
<tr>
<th>Industry</th>
<th>Take Home Pay (€)</th>
<th>% Variable Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>Consumer Goods (n= 3,638)</td>
<td>34492.59</td>
<td>9522.07</td>
</tr>
<tr>
<td>Industrial Goods (n= 6,541)</td>
<td>37978.25</td>
<td>10800.80</td>
</tr>
<tr>
<td>Financial Services (n=3,648)</td>
<td>39550.72</td>
<td>12797.51</td>
</tr>
<tr>
<td>Trade (n= 362)</td>
<td>26205.46</td>
<td>15475.10</td>
</tr>
<tr>
<td>Other industries (n= 235)</td>
<td>32366.83</td>
<td>7071.91</td>
</tr>
<tr>
<td>France (n=7,823)</td>
<td>37044.58</td>
<td>11864.86</td>
</tr>
<tr>
<td>Germany (n=576)</td>
<td>43995.00</td>
<td>11249.04</td>
</tr>
<tr>
<td>Italy (n=1,378)</td>
<td>34266.39</td>
<td>11858.68</td>
</tr>
<tr>
<td>Netherlands (n=1,147)</td>
<td>31221.70</td>
<td>6656.32</td>
</tr>
<tr>
<td>United Kingdom (n=3,500)</td>
<td>39172.05</td>
<td>10374.72</td>
</tr>
</tbody>
</table>

Table 2
Summary Statistics for Sales Managers by Industry and by Country

(\(n = 4957\))

<table>
<thead>
<tr>
<th>Industry</th>
<th>Take Home Pay (€)</th>
<th>% Variable Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>Consumer Goods (n= 1828)</td>
<td>51233.31</td>
<td>14135.65</td>
</tr>
<tr>
<td>Industrial Goods (n= 2246)</td>
<td>53002.42</td>
<td>11796.94</td>
</tr>
<tr>
<td>Financial Services (n= 724)</td>
<td>50381.94</td>
<td>12570.43</td>
</tr>
<tr>
<td>Trade (n= 79 )</td>
<td>45280.73</td>
<td>9523.01</td>
</tr>
<tr>
<td>Other industries (n= 80)</td>
<td>53192.37</td>
<td>16348.21</td>
</tr>
<tr>
<td>France (n=3,836)</td>
<td>51200.06</td>
<td>12632.30</td>
</tr>
<tr>
<td>Germany (n=427)</td>
<td>57259.83</td>
<td>14236.95</td>
</tr>
<tr>
<td>Netherlands (n=152)</td>
<td>51901.61</td>
<td>11462.38</td>
</tr>
<tr>
<td>United Kingdom (n=542)</td>
<td>52148.75</td>
<td>13348.72</td>
</tr>
</tbody>
</table>
### Table 3
Summary Statistics for Salespeople

(n = 14424)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>S.D.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Take Home Pay\textsubscript{industry} \textsuperscript{a}</td>
<td>.00</td>
<td>1.00</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Ratio Variable to Fixed Pay\textsubscript{industry} \textsuperscript{a}</td>
<td>.00</td>
<td>1.00</td>
<td>.46</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ratio Variable to Fixed Pay \textsuperscript{b}</td>
<td>-2.45</td>
<td>1.39</td>
<td>.46</td>
<td>.98</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Job Challenge</td>
<td>404.75</td>
<td>91.92</td>
<td>.37</td>
<td>-.13</td>
<td>-.13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Firm Size\textsuperscript{c}</td>
<td>.11</td>
<td>2.05</td>
<td>.09</td>
<td>.01</td>
<td>.06</td>
<td>-.07</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Cost of living</td>
<td>.96</td>
<td>.07</td>
<td>.08</td>
<td>-.13</td>
<td>-.11</td>
<td>-.22</td>
<td>.57</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Employee’s Retained Income after Taxes</td>
<td>.74</td>
<td>.05</td>
<td>-.47</td>
<td>-.15</td>
<td>-.15</td>
<td>-.43</td>
<td>-.02</td>
<td>.06</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8. Employer’s Taxes</td>
<td>.31</td>
<td>.17</td>
<td>-.08</td>
<td>.16</td>
<td>.17</td>
<td>-.10</td>
<td>-.34</td>
<td>-.56</td>
<td>.66</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
\textsuperscript{a} Those variables were standardized by industry because of heteroscedasticity as confirmed by the Levene’s tests of homogeneity of variances (p<.0001).
\textsuperscript{b} This variable was measured as a natural logarithm.
\textsuperscript{c} This variable was measured as the sum of total employees and sales revenues z-scores.

---

### Table 4
Summary Statistics for Sales Managers

(n = 4957)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>S.D.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Take Home Pay\textsubscript{industry} \textsuperscript{a}</td>
<td>.00</td>
<td>1.00</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Ratio Variable to Fixed Pay\textsubscript{industry} \textsuperscript{a}</td>
<td>.00</td>
<td>1.00</td>
<td>.36</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ratio Variable to Fixed Pay \textsuperscript{b}</td>
<td>-2.41</td>
<td>1.30</td>
<td>.36</td>
<td>.97</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Job Challenge</td>
<td>599.98</td>
<td>121.02</td>
<td>.47</td>
<td>-.10</td>
<td>-.13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Firm Size\textsuperscript{c}</td>
<td>-.32</td>
<td>1.27</td>
<td>-.05</td>
<td>-.15</td>
<td>-.18</td>
<td>-.01</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Cost of living</td>
<td>.96</td>
<td>.04</td>
<td>.05</td>
<td>-.25</td>
<td>-.29</td>
<td>.05</td>
<td>.47</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Employee’s Retained Income after Taxes</td>
<td>.72</td>
<td>.05</td>
<td>-.55</td>
<td>-.01</td>
<td>.01</td>
<td>-.36</td>
<td>.07</td>
<td>-.38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8. Employer’s Taxes</td>
<td>.36</td>
<td>.16</td>
<td>-.14</td>
<td>.25</td>
<td>.28</td>
<td>-.13</td>
<td>-.18</td>
<td>-.77</td>
<td>.80</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
\textsuperscript{a} Those variables were standardized by industry because of heteroscedasticity as confirmed by the Levene’s tests of homogeneity of variances (p<.0001).
\textsuperscript{b} This variable was measured as a natural logarithm.
\textsuperscript{c} This variable was measured as the sum of total employees and sales revenues z-scores.
# Table 5

## Salespeople Compensation Model Parameter Estimates

(T-statistics in parentheses and standardized estimates in squared brackets)

<table>
<thead>
<tr>
<th></th>
<th>International Companies</th>
<th>National Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System R²=.44</td>
<td>System R²=.53</td>
</tr>
<tr>
<td></td>
<td>F(8, 10702)=1035.68****</td>
<td>F(8, 18126)=2556.67****</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Model (1)</th>
<th>Model (2)</th>
<th>Model (1)</th>
<th>Model (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St(Take Home Pay)</td>
<td>St(Ratio Variable to Fixed)</td>
<td>St(Take Home Pay)</td>
<td>St(Ratio Variable to Fixed)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-8.04 ****</td>
<td>11.14 ****</td>
<td>-6.31 ****</td>
<td>13.43 ****</td>
</tr>
<tr>
<td></td>
<td>(-39.67)</td>
<td>(39.25)</td>
<td>(-44.14)</td>
<td>(71.05)</td>
</tr>
<tr>
<td></td>
<td>[.00]</td>
<td>[.00]</td>
<td>[.00]</td>
<td>[.00]</td>
</tr>
<tr>
<td>Job Challenge</td>
<td>6039x10^6 ****</td>
<td>-3170x10^6 ****</td>
<td>5809x10^6 ****</td>
<td>-5340x10^6 ****</td>
</tr>
<tr>
<td></td>
<td>(59.14)</td>
<td>(-23.82)</td>
<td>(62.64)</td>
<td>(-46.84)</td>
</tr>
<tr>
<td></td>
<td>[0.62]</td>
<td>[-.34]</td>
<td>[.50]</td>
<td>[-.45]</td>
</tr>
<tr>
<td>Firm Sizea</td>
<td>-0.08 ****</td>
<td>-.12 ****</td>
<td>-.05 ****</td>
<td>.10 ****</td>
</tr>
<tr>
<td></td>
<td>(-6.22)</td>
<td>(7.73)</td>
<td>(-12.05)</td>
<td>(23.96)</td>
</tr>
<tr>
<td>Cost of Living</td>
<td>7.07 ****</td>
<td>5.40 ****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(35.24)</td>
<td>(39.84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[.38]</td>
<td>[.39]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio Variable to Fixedb</td>
<td>.43 ****</td>
<td>.54 ****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(56.45)</td>
<td>(100.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[.56]</td>
<td>[.78]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employee’s Retained Income after Taxes</td>
<td>-15.58 ****</td>
<td>-17.17 ****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-41.01)</td>
<td>(-71.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-.96]</td>
<td>[-.87]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employer’s Taxes</td>
<td>4.85 ****</td>
<td>5.00 ****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(39.69)</td>
<td>(64.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[.79]</td>
<td>[.80]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***p<.0001    ** p<.01    * p<.05

a This variable was measured as the sum of total employees and sales revenues z-scores.
b This variable was measured as a natural logarithm.
Table 6

Sales Managers’ Compensation Model Parameter Estimates
(T-statistics in parentheses and standardized estimates in squared brackets)

<table>
<thead>
<tr>
<th></th>
<th>International Companies</th>
<th>National Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System R² = .47</td>
<td>System R² = .48</td>
</tr>
<tr>
<td></td>
<td>F(9, 5099) = 502.87****</td>
<td>F(9, 4793) = 491.03****</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Model (3)</th>
<th>Model (4)</th>
<th>Model (3)</th>
<th>Model (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St(Take Home Pay)</td>
<td>St(Ratio Variable to Fixed)</td>
<td>St(Take Home Pay)</td>
<td>St(Ratio Variable to Fixed)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-8.09 ****</td>
<td>13.85 ****</td>
<td>-6.28 ****</td>
<td>15.13 ****</td>
</tr>
<tr>
<td></td>
<td>(-17.27)</td>
<td>(28.88)</td>
<td>(-13.07)</td>
<td>(30.15)</td>
</tr>
<tr>
<td></td>
<td>[.00]</td>
<td>[.00]</td>
<td>[.00]</td>
<td>[.00]</td>
</tr>
<tr>
<td>Job Challenge</td>
<td>7.49x10^-6 ****</td>
<td>-2360x10^-6 ****</td>
<td>1436x10^-6</td>
<td>-3170x10^-6 ****</td>
</tr>
<tr>
<td></td>
<td>(.82)</td>
<td>(-16.44)</td>
<td>(1.33)</td>
<td>(-17.41)</td>
</tr>
<tr>
<td></td>
<td>[.10]</td>
<td>[-.32]</td>
<td>[.16]</td>
<td>[-.34]</td>
</tr>
<tr>
<td>Job Challenge Squared</td>
<td>2.62x10^-6 ****</td>
<td>2.518x10^-6 ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.83)</td>
<td>(3.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[.46]</td>
<td>[.37]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Size^a</td>
<td>-.10 ****</td>
<td>.06 **</td>
<td>-.02</td>
<td>.08 ****</td>
</tr>
<tr>
<td></td>
<td>(-5.15)</td>
<td>(2.73)</td>
<td>(-1.77)</td>
<td>(5.94)</td>
</tr>
<tr>
<td></td>
<td>[.08]</td>
<td>[.06]</td>
<td>[.03]</td>
<td>[.12]</td>
</tr>
<tr>
<td>Cost of Living</td>
<td>8.31 ****</td>
<td>5.82 ****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(18.51)</td>
<td>(13.45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[.29]</td>
<td>[.26]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio Variable to Fixed^b</td>
<td>.51 ****</td>
<td>.49 ****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(40.50)</td>
<td>(42.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[.61]</td>
<td>[.68]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employee’s Retained Income after Taxes</td>
<td>-20.68 ****</td>
<td>-21.42 ****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-30.08)</td>
<td>(-30.98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-1.04]</td>
<td>[-1.02]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employer’s Taxes</td>
<td>6.70 ****</td>
<td>6.70 ****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(31.55)</td>
<td>(32.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.03]</td>
<td>[1.04]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

****p<.0001  *** p<.001  ** p<.01  * p<.05

^a This variable was measured as the sum of total employees and sales revenues z-scores.

^b This variable was measured as a natural logarithm.
### Table 7
Summary of Hypotheses and Empirical Conclusions

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Expected Sign</th>
<th>Empirical Conclusions</th>
</tr>
</thead>
</table>
| H1: The level of take-home pay increases  
  a. with job challenge for salespeople.  
  b. at an increasing rate with job challenge for sales managers. | + | Supported |
| H2: The greater the role challenge, the lower the proportion of take-home pay generated by pay-for-performance formulas  
  a. for salespeople.  
  b. for sales managers. | - | Supported |
| H3: The proportion of take-home pay that is due to variable sources increases as the employee’s taxation burden increases  
  a. for salespeople.  
  b. for sales managers. | + | Supported |
| H4: The proportion of take-home pay that is due to variable sources increases as the employer’s taxation burden increases  
  a. for salespeople.  
  b. for sales managers. | + | Supported |
| H5: The level of take-home pay increases with the proportion of pay due to variable sources  
  a. for salespeople.  
  b. for sales managers. | + | Supported |
REFERENCES


Baron, James N. and David M. Kreps (1999), Strategic Human Resources: Frameworks for General Managers, New York: John Wiley & Sons, Inc.


Cappelli, Peter (1999), The New Deal at Work, Boston: HBS Press.


Endnotes

1 Here, Beatty and Zajac (1994) point out that agency theory does not offer a unified perspective. Normative agency theory argues that finding some way to tie pay to performance is the best solution wherever feasible: substituting costly behavior control (“monitoring”) is a second best solution. In contrast, positive agency theory celebrates the benefits of monitoring, saying little about its costs, and is skeptical about the superiority of “pay for performance.” However, both agency theory and organizational theory agree that as tasks become complex, appropriate output measures become difficult to specify and combine, which economists call “multi-tasking concerns” (Prendergast 1999).

2 A tax regime can have high rates without being progressive, or have low rates, yet be progressive. Burdensome tax regimes are heavy and progressive: they leave small fractions of gross income in the bank account of many wage earners.

3 In addition to being concerned about internal transaction costs, the firm may also be concerned about managing financial risk, and may turn to variable pay as a risk-reduction mechanism to guarantee that higher pay is given only with higher sales results – so that salespeople and sales managers effectively “self-fund” their pay plans. The risk of high financial burden to the firm would presumably be compounded in countries with more burdensome tax regimes, giving firms there an incentive to weight pay more heavily toward incentives. We thank an anonymous reviewer for suggesting this logic. While this effect can certainly exist, it abstracts away from another very important effect of sales force compensation, which is the motivational effect of the compensation plan: in particular, not only does the “tax bill” for the firm change, but the structure of the pay plan affects the total sales outcome for the firm, through its motivational aspects as well. This “self-funding” logic operates in the same direction as our internal transaction costs explanation, and is thus consistent with our hypothesis. Logically, both the internal transaction costs argument and the risk management argument can be at work in tax regimes of different degrees of severity.

4 Salesperson data is for all five countries, while sales manager data are for four countries only (France, Germany, the Netherlands, and the U.K.).

5 Details are available upon request from the authors.

6 For example, if a job rates 100 Hay points, the next job cannot have fewer than 115 points. If a job exists at 115 points, the next job cannot have fewer than 132 points (115% of 115 points). Going from 100 to 200 points can cover no more than five job steps (115, 132, 152, 175, 201), while going from 200 to 300 points can cover no more than three job steps (231, 266, 306).

7 This measure of purchasing power is not dependent on currency exchange rates.

8 Although the Chow test determined that the coefficients in our model are not identical in country sub-samples, we conducted our analysis on pooled country data because extensive country analysis provided evidence that the pattern of coefficients was overall consistent across countries. Analysis by country suggested differences in magnitude, not in direction of effects. As our purpose is to test the significance and direction of effects, we present the results of the cross-country analyses.

9 $\lambda_{LM} = 177.11$ and $614.97$ for salespeople working in international and national companies respectively, distributed as a chi-square with 1 degree of freedom, $p < .0001$.

10 $\lambda_{LM} = 185.17$ and $156.05$ for sales managers working in international and national companies respectively, distributed as a chi-square with 1 degree of freedom, $p < .0001$. Greene (2002, p. 679) also suggests that SUR is the appropriate estimation technique in this situation.

11 Scatterplots of the data are available upon request from the authors.

12 Our dependent variable in models 2 and 4 is logged. In this log formulation, a linear regression coefficient implies a convex effect on the actual variable/fixed ratio (i.e. the antilog). However, for reasonable changes in the independent variables in our empirical data context, the true effect of any such change is essentially linear. Details of this analysis are available from the authors upon request.

13 To give institutional meaning to these coefficients, consider the example of a salesperson working for an international company in the consumer goods sector, paid with a variable remuneration representing 50% of his/her total compensation, who is promoted to a job with 100 more Hay points. This salesperson’s ratio of variable to fixed pay is predicted to decrease by 33%, which implies a new variable pay representing 40% of his/her total compensation. A similar case for a sales manager implies that a sales manager’s variable pay decreases from 50% to 44% of his/her total compensation. Calculations are available from the authors.

14 A rival explanation for these findings is that firms reward not the job but the jobholder, and that challenging jobs are staffed by people with high levels of human capital. Hence, the most skilled people, not the most demanding jobs,
are the recipients of income paid in a convex fashion. For the sales occupation, the relevant human capital is difficult to identify (Churchill et al. 1985), but two commonly-used indicators of human capital are job tenure and age. As we have these measures for the French sample, we tested this rival explanation on the French data by including job tenure and age in the system regressions, both with and without job challenge. The results show first that job tenure and age fail to add to the explained variance, and further that when job challenge is omitted from the estimation, explained variance drops sharply. We therefore surmise that firms appear not to use cues like demographics (e.g., job tenure or age) to fill sales jobs.

We thank an anonymous reviewer for suggesting this test to us.

15 This same pattern fits CEO compensation (Gomez-Mejia 1994), but is highly unusual for most jobs in most companies (Sperling 2001).

16 Burdensome tax regimes can occur in national cultures that avoid uncertainty (Hofstede 1997). The tax regime (which is itself a product of culture) drives firms to pay for performance. Ironically, this pay structure creates uncertainty for sales personnel.